

Perspectives on Energy in San Juan County

What problems are we trying to solve?

Low Carbon Footprint Affordable Energy Energy On Demand Reduce Waste Sustainable Load Match Peak Shave Zero Load Growth...

"The problems drive the solutions."

"Incentives drive innovation."

Board Directive #2

OPALCO will maintain a longterm evolving strategic power supply resource plan to provide safe, adequate, reliable, advantageously priced power including appropriate mitigation of source risk, economic, climate and energy policy uncertainty.

- Maintain BPA as our primary longterm power supplier.
- OPALCO infrastructure improvements.
- operations.

Investigate and form relationships with alternate suppliers of power.

Implement energy efficiency and conservation programs as a cost effective power resource. These include member projects, BPA programs, and

Encourage local generation installations consistent with our OPALCO grid

Power Supply Resource Strategy

Notes

- Schematic illustration, not to scale
- Range starts at 185 million kWh

2¢ per kWh

varies with source

cost mitigation, supply diversity

3.5¢ per kWh

OPALCO Energy Sources: 2014

BPA

2012 Fuel Mix Hydro: 87.48% Nuclear: 9.51% Coal: 1.59% Wind: 0.62% Natural Gas: 0.64% Biomass: 0.09% Waste: 0.04% Petroleum: 0.02% Landfill Gases: 0.01% Other: 0.01%

Energy Source	Production (kV
BPA	205,000,0
Energy Efficiency	1,418,0
Solar	624,7
Micro-Hydro	142,0
Wind	5,1
Tota	l 207,189,9

Energy Source	Production (kWh)	Storage	On Demano
BPA	205,000,000		
Energy Efficiency	1,418,000		
Solar	624,723		×
Micro-Hydro	142,027		
Wind	5,167		×
Tidal			×
Biogas			?
Anaerobic Digester			?
Pumped Hydro			
Electric Vehicles			
Demand Response		~	

Each energy resource has its pros and cons...

firm versus intermittent low cost versus expensive clean versus dirty load following seasonal available on demand

. . . .

OPALCO Seasonal Load

Seasonal Energy Consumption Patterns

500

Solar Production: Seasonal Variance

July

Source: NREL

January

6 kWh/m²/day

Load Fit and Demand Example: Seasonal Load and Solar Production

2014

Source: OPALCO, PVWatts

- OPALCO load 2012 to 2014
- Solar production from 10,000 rooftop arrays of 7.5 kW each = 75 MW
- Solar cost, about \$225 million (not including financing and grid integration)
- Solar production is 180 degrees out of phase with load.

Load Fit and Demand Example: Daily Load and Solar Production

- OPALCO load on cold winter day and warm summer day
- Primary peak load in morning, secondary peak in evening, outside peak sun production
- Solar production from 7.5 kW rooftop array on sunny summer day and partly cloudy winter day

"A rate change should not be confused with the <u>rates</u>."

OPALCO rates are still so OPALCO's grid is one

OPALCO rates are still some of the lowest in the country.

OPALCO's grid is one of the most complicated.

BPA Monthly Bill to OPALCO

COMBINED BILL

Customer Name:	Orcas Power & Light Cooperative	Bill Period.	March 2015
88 ID:	MAR15-PAT01-10288	Period Ending:	March 31, 20
Issue Date:	April 09, 2015		

POWER

Rate Schedule	Service Description	Contract Number	Service Service Amount Unit	Rate	200
PF-14	Composite Charge LF	13085	1,961,053 DOL @	0.34904	
PF-14	LDD Composite Charge UF	13085	(684,486) DOL @	0.05337	
PF-14	Non Slice Charge LF	13085	(301,568) DOL (#	0.34904	- 3
PE-14	100 Non Sice Charge UF	13065	105,259 DOL @	0.05337	
PF-14	HLH Load Shaping	13085	(21,237)KWH @	0.03023	
PF-14	LDD HLH Load Shaping UF	13085	542 DOL (8	0.05337	
PF-14	LLH Load Shaping	13085	603,254 KWH @	0.02510	
PF-14	LDD LLH Load Shaping LF	13085	(15,142) DOL (#	0.05337	
PE-14	Demand	13085	8,884 KW (2	8.93000	
PF-14	LDD Demand	13085	(79,334) DOL @	0.05337	
PF-14	Tier 2 Load Growth	13085	1,243,039 KWH (8	0.04162	
	REP Customer Refund	12322	1 MO @	(11,312.00000)	
and miner					

Sub Totals

TRANSMISSION

Rate Schodule	Service Description	Contract Number	Service Amount	Service Unit	Rate	Amount \$
NT-14	NT Service Charge	10128	40,324	KW @	1.74100	70,291
ACS-14	SCD NT Long Term Film	10129	40,374	KW Ø	0.30000	42,112
ACS-14	GSR NT Long Term Firm	10128	40,374	kw @	0.00000	0
ACS-14	Reg & Prequency Response	10126	18,602,560 K	ONH (D	0.00012	2,232
ACS-14	Spin Reserve Requirement	10126	568,680 ×	OWH CF	0.01086	6,176
ACS-14	Supp Reserve Requirement	10128	568,580 k	WH (B)	0.00995	5,658
0RSP-14	PFF Legging Ratchel	10128	7,715 K	VAR.Ø	0.28000	2,160
Sub Total	s -					\$98,629
Total						\$775,192

Fixed

Charge

<u>Notes</u>

- As with OPALCO, the bulk of BPA charges are fixed costs.
- Also worth noting are the various • charges that reward load that corresponds to production (e.g. load shape, demand,...)

Source: OPALCO

History of 1,000 kWh Monthly Bill Inflation Adjusted

Headline

- OPALCO 2015 rates are lower than they were 23 years ago
- Rate has <u>decreased</u> an average of -.29% per year, 1992 through 2015

- 1992 through 2015, Residential
- Monthly bill for average OPALCO member usage of 1,000 kWh/month
- Monthly bill includes all Facility, Usage and Demand Charges.
- Rate increases postponed during 2008 -2011 recession and after effects, to ease economic impact on county.

History of 1,000 kWh Monthly Bill: Actual versus CPI tracked

Source: OPALCO, BLS

Headline

OPALCO rates up less than inflation

- CPI (Consumer Price Index) a basket of consumer goods and services, such as transportation, food and medical care, ...
- 1992 through 2015, not adjusted for inflation
- Monthly bill for average OPALCO member usage of 1,000 kWh/month
- Monthly bill includes all Facility, Usage and Demand Charges.

Conservation Potential Assessment (CPA)

80/20 Rule (Pareto Principal)

"What 20% of activities consume 80% of energy?"

Residential Primary Energy End-Use

"What 20% of activities consume 80% of energy?"

source: Buildings Energy Data Book, DOE - 2012

Lighting 6%

> Electronics 5%

Cooking 4%

Refrigeration 4%

Wet Cleaning 3% Computers 2%

San Juan County Energy Use

Home Vintage

Source: OPALCO 2013 Conservation Potential Assessment (CPA)

Notes

- 13,313 homes
- .78% growth rate

1992 - 2008

San Juan County Energy Use

Source: OPALCO 2013 Conservation Potential Assessment (CPA)

Electric Heat System Type

Forced Air

- Looking at comparative fossil fuel (propane, heating oil, gasoline) and electric usage costs
- Fossil fuel costs are national averages. Local costs are usually higher.
- Electric usage costs are for 2015 at 8.55¢/kWh, though they reduce to 8.20¢/kWh in 2017
- Doesn't look at heater cost, rebates, tax credits, fuel tank cost/ rental, etc.
- Carbon footprint data is from EIA, EPA and IPCC

Heating Types: Annual Cost and Carbon Footprint

Statement stuffer mailed to San Juan Propane customers in 2008

Front

How will I afford to keep my house warm as heating prices continue to rise?

The average U.S. household will pay \$986 in heating costs this winter, up 10.9% from the 2006-07 season and \$9 higher than the original forecast made a month ago, according to the Energy Information Administration, the analytical arm of the Energy Department,

Propane Price Shocks

Back

Source: EIA, OPALCO

Fuel Cost for 1,000,000 BTU of Energy

<u>Headline</u>

- Electric generally costs less than propane and fuel oil, with much more stable pricing and slower growth trend.
- In application, electric heaters are more efficient and can dramatically reduce heating costs.

- For comparison, all fuel prices normalized to 1,000,000 BTUs of energy
- Electric price is based on OPALCO rate plan through 2020. Propane and heating oil price through February 2015.
- Note extreme price shock volatility of propane and heating oil pricing compared to electric

Heating Types: Annual Cost and Carbon Footprint

Headline

Electric heaters are lower cost, much \bullet cleaner, and waste less energy than propane, heating oil, and wood heating.

Wood Stove

Dirtier

- In a typical home, requiring 70 million BTUs of heat, what is the annual cost and carbon footprint, for various heaters?
- Bubble area proportional to installed share in San Juan County (wood/pellet and heat pump share are estimates)
- **GREEN** = Electric heaters **RED** = Propane/Oil/Wood heaters
- For hydronic radiant heating, see Water Heater chart

San Juan County Energy Use

Electric 81%

Source: OPALCO 2013 Conservation Potential Assessment (CPA)

Water Heating Fuel Type

1% Solar w/ electric backup

18% Propane

Water Heaters: Annual Cost and Carbon Footprint

Standard Propane Tank

Electric water heaters are much \bullet lower cost, much cleaner, and waste less energy than propane

- In a typical home, what is the annual igodolcost and carbon footprint, for various electric and propane water heaters?
- Bubble area proportional to installed ulletshare in San Juan County (tankless and heat pump are estimates)
- **GREEN** = Electric water heaters (81% Share) \bullet **RED** = Propane water heaters (18% Share)

Combining Home and Water Heating: Annual Cost and Carbon Footprint

Headline

An all electric home is about 2 to 6 times lower cost to heat the space and water, and 15 to 45 times cleaner, with much less wasted energy than propane or heating oil.

Notes

 \bullet

- In a typical home, what is the total annual cost and carbon footprint, for various combinations of heating and water heaters?
- **GREEN** = Electric heaters \bullet **RED** = Propane/Oil

Source: EIA, OPALCO

Miles

10,000

Cost of Driving

Annual Fuel Cost of Driving a Car

<u>Headline</u>

Electric vehicles cost from 3 to 6 times less than gasoline vehicles, depending on the price of gasoline.

- Driving 10,000 miles per year
- Internal Combustion Engine (ICE) car getting 30 Miles Per Gallon (MPG)
- Electric Vehicle (EV) getting 4 miles per kWh of electricity (e.g. Nissan Leaf)
- Electric price is based on OPALCO rate plan through 2020. Regular octane gasoline price through February 2015.
- Note extreme price shock volatility of gasoline cost compared to electric

Driving A Car: Annual Cost and Carbon Footprint

our	ce: EIA,	EPA, OPALC	0	С	arbon	Intens	ity (kg	CO ₂ e
				eaner		Pollu	ution	
		φσ	0 1,0	00 2,000	3,000	4,000	5,000	6,000
	LOW	\$0	⊢+					
		\$200	EV - 4 EV - 5	4 miles pe 5 miles pe	er kWh r kWh			
		\$400	_ EV - 3	3 miles pe	r kWh			
	Anr	ΨΟΟΟ						
	I lan	\$600					E - 50 N	1PG Hyb
	Drivir	\$800						E - 40 M
	Jg C	\$1,000						
	ost	\$1,200						
		\$1,400						
	High	\$1,600						
		ΦΙ,ΟΟΟ						
		¢1 000						

ICE - 20 MPG

ICE - 30 MPG

ЪС

orid

leadline

Electric vehicles energy cost about 3 to 10 times less than gasoline vehicles, depending on the MPkWh and MPG, emitting up to 200 times less CO2.

- Driving 10,000 miles per year
- Internal Combustion Engine (ICE) car getting 20 to 50 Miles Per Gallon (MPG)
- Electric Vehicle (EV) getting 3 to 5 miles per kWh of electricity (e.g. Nissan Leaf)
- Electric price is based on OPALCO rate plan through 2020. Regular octane gasoline price two year average through February 2015.
- **GREEN** = Electric Vehicles (EV) **RED** = Internal Combustion Engines (ICE)

All Electric Home and Car Versus Fossil Fuel

All electric home up to 6 times lower cost and up to 90 times less CO2.

- Heating: Electric baseboard or heat pump, or propane furnace
- Water Heater: Standard electric or heat pump, or standard propane
- Car: Internal Combustion Engine (ICE) getting 30 Miles Per Gallon (MPG), or Electric Vehicle (EV) getting 4 miles per kWh of electricity (e.g. Nissan Leaf)
- Electric price is based on OPALCO rate plan through 2020. Regular octane gasoline price two year average through February 2015.
- **GREEN** = Electric heating and car **RED** = propane heating and gasoline car

What problems are we trying to solve?

Low Carbon Footprint Affordable Energy Energy On Demand Reduce Waste Sustainable Load Match Peak Shave Zero Load Growth...

"actual costs versus social engineering"

"The problems drive the solutions."

"Incentives drive innovation."

Financial Analysis Prepared by OPALCO Board Member Dr. Jerry Whitfield

OPALCO Revenue and Cost of Electricity

Facts

- Today OPALCO Members pay on average 11¢/kWh overall for electricity.
- OPALCO pays BPA 4¢/kWh for purchased power.
- It costs OPALCO 7¢/kWh to deliver power to Members residences and businesses.
- The Fiber Optic Backbone costs Members 0.25¢/kWh.

Five Year Trend

- Sale of electricity (kWh) to Members has been flat.
- Members cost of electricity has increased by 3.3% per year.
- Cost of BPA power has increased by 5.6% per year.
- OPALCO's Non-Energy costs have risen by 6.5% per year.
- Resulting Net Margin has decreased to zero in 2014.

Conclusions

- The cost of providing safe and reliable power has increased at about twice the rate of inflation.
- Members cost of electricity has increased more or less with inflation.
- Members have been getting a good deal at the expense of OPALCO's Net Margin which is used to pay for Members Equity in the Cooperative.
- OPALCO's ability to borrow future funds is being undermined by very low Net Margins.

SSUES

- · Lower than expected electrical demand is due to a complex mix of warmer weather, member energy conservation, deployment of roof-top solar, and member lifestyle.
- Price per kWh can increase even while individual member's bills decrease through lower usage.
- Rate structure requires pricing of 36.5% for energy and 63.5% for facility charge to reflect actual costs.
- OPALCO revenue volatility in times of flat demand becomes manageable if pricing reflects actual costs.
- Reducing energy component in price decreases incentive for energy conservation or deployment of roof-top solar.
- Estimated member investment in roof-top solar is about \$3.5M.

