OPALCO 2015 IRP Overview December 2015 Board Meeting

IRP and Long Range Plan: Timeline

Goals

Reliable (safe and stable) Affordable (compared to other forms of energy, especially fossil fuels) **Clean** (minimal carbon footprint) Sustainable (for critical services)

Highlights

OPALCO's connection to the mainland is essential

to meet the enormous energy demand of the county, now and into the future support expansion and firming up of intermittent local distributed renewables

Continue preparing the grid for the future

in good shape, with decades of service life ahead

the grid will continue to be improved for increased efficiency, ramping up of local renewable energy, two-way energy markets, increasing conductor sizes and feeders, increased grid control backbone reach and capability, improved communications

Encourage energy efficiency + fuel switching

will help members reduce their **total** energy bill and carbon footprint increase the efficiency of the grid, help keep the cost of electricity affordable

OPALCO Energy Demand

250M

Source: OPALCO, Cisco VNI

slow population growth, AC, fuel switching

warming world, EE&C programs, heat pumps, local renewable energy

2020 2010 2015 2025 2030 2035

Headline

- In the 20th Century, SJC electric energy demand was driven by:
 - population growth and
 - fuel switching from wood, propane and fuel oil heating
- In the 21st Century, SJC energy demand is projected to be flat driven up by:
 - slow population growth, and
 - emerging load from AC and fuel switching

and driven down by:

- Energy Efficiency & Conservation programs (EE&C),
- reduced heat load due to a warming world, and increased use of super efficient heat pumps.

OPALCO Energy Sources: 2014

Energy Source	Production (kV
BPA	205,000,0
Energy Efficiency	1,418,0
Solar	624,7
Micro-Hydro	142,0
Wind	5,1
Total	207,189,9

SJC Electric Consumption and Solar Example: Seasonal Load and Solar Production

Source: OPALCO, PVWatts

Notes

- OPALCO load 2012 to 2014
- Solar production from 10,000 rooftop arrays of 7.5 kW each = 75 MW
- Solar cost, about \$150 million (not including financing and grid integration)
- Solar production is 180 degrees out of phase with load, needing winter sources like hydro, wind, tidal, pumped hydro,...

Intermittent Local Resources: Community Dialog

Every energy resource has pros and cons.

Over the next 20 years, where do we want our energy to come from?

Community Solar

Off Shore Wind Turbines Denmark: 5,500,000 people Retail electric rate: 34¢/kWh

Under Sea Tidal Turbines Scotland: 5,300,000 people Retail electric rate: 28¢/kWh

Integrated Resource Plan Roadmap

		2015	2016	2017	2018	2019	2020	2025	2030	2035	
	Planning	IRP	Long Range Plan			IRP update	LRP update	IRP, LRP update	IRP, LRP update	IRP, LRP update	
jy Demand	Fuel Switching - heat pumps, EVs		keep usage rate le	ess than fossil fuels	than fossil fuels, incentivize switching from fossil fuel heaters and transportation to heat pumps and EVs						
	Energy efficiency programs	education, outreach, fairs,		expand to balance fuel switching, a portion fuel switching funds revenue funds programs beyond BPA							
Enerç	Demand management		refine TOU rates, education	evaluate DRUs for peak shaving	prep DRU plan	an ramp up DRU deployment					
	Community Solar: Schools	build complete	admin	admin	admin	admin	admin				
seo.	Community Solar: Home and Business		planning, grant, subscriptions	, grant, build site 1, solar + storage (for solar and peak shaving)			nd member interes	t dictate			
sesour	Utility Scale Solar, Wind, Tidal,		evaluate, commur	nity dialog			wind grid parity? ramp up	solar grid parity? ramp up	tidal grid parity? ramp up		
ergy F	TOG rates		design	beta test	rollout with smart	standards					
Ene	BPA	maximize BPA rebates						contract review			
	Strategic energy partners	evaluate	commit	join	cleaner fuel mix, peak demand averaging,						
	Grid: Distribution	continue under grounding to improve reliability, heavy up to reduce losses and fortify feeders for distributed local renewables									
q	Grid: Submarine cables		Lopez - San Juan								
The Gri	Grid: Transmission			Decatur tap							
	Grid Control Backbone	buildout	fill wireless blackholes		integrate smart inverter and V2G standards						
	Rock Island	acquire, accelerat fiber, LTE, T Mobi	e neighborhood	pay back loan	continue expanding network profits start flowing back to co-op in 2021				2021		

Grid Parity

Grid parity occurs when an alternative energy source can generate power at a levelized cost of electricity (LCOE) that is less than or equal to the price of legacy power sources.

Integrated Resource Plan Roadmap

2015	2016	2017	2018	2019	2020	2025	2030	2035					
Reduce (more efficie • Energy E • Fuel Swit • Keep elec	Total Ener ent, clean, affe fficiency ching (Electrit ctricity cost le	gy Demar ordable) fy everything) ess than fossi	nd I fuels		Grid								
Diversify (more reliab • Optimize • Build Cor • Commun • Strategic	Resource le, affordable BPA mmunity solar ity dialog on partners (PN	S , local) r, storage rese tidal and wind GC)	ources d energy		Ramp Wine (moder Diverse local sou up with I + BF	Up Solar, d, Tidal ated cost) intermittent urces firmed ocal storage A hydro	A	Reliab Affordal Clear Efficier Smar Loca					
Continue (more efficie distributed i • Submarir • Grid Cont • Robust fe	e Upgradir ent, reliable, re ntermittent en ne cables trol Backbone eeders	ng Grid eady for local nergy)											

- Smart Grid interface for Solar, EVs, home

e ole ٦t

Discussion

